Skip to content

设计模式:行为型-解释器模式

Published: at 19:09:45

比起命令模式,解释器模式更加小众,只在一些特定的领域会被用到,比如编译器、规则引擎、正则表达式。

原理和实现

解释器模式的英文翻译是 Interpreter Design Pattern。在 GoF 的《设计模式》一书中,它是这样定义的:

Interpreter pattern is used to defines a grammatical representation for a language and provides an interpreter to deal with this grammar.

翻译成中文就是:解释器模式为某个语言定义它的语法(或者叫文法)表示,并定义一个解释器用来处理这个语法。

看了定义,你估计会一头雾水,因为这里面有很多我们平时开发中很少接触的概念,比如“语言”“语法”“解释器”。实际上,这里的“语言”不仅仅指我们平时说的中、英、日、法等各种语言。从广义上来讲,只要是能承载信息的载体,我们都可以称之为“语言”,比如,古代的结绳记事、盲文、哑语、摩斯密码等。

要想了解“语言”表达的信息,我们就必须定义相应的语法规则。这样,书写者就可以根据语法规则来书写“句子”(专业点的叫法应该是“表达式”),阅读者根据语法规则来阅读“句子”,这样才能做到信息的正确传递。

而我们要讲的解释器模式,其实就是用来实现根据语法规则解读“句子”的解释器。

为了让你更好地理解定义,我举一个比较贴近生活的例子来解释一下。

实际上,理解这个概念,我们可以类比中英文翻译。我们知道,把英文翻译成中文是有一定规则的。这个规则就是定义中的“语法”。我们开发一个类似 Google Translate 这样的翻译器,这个翻译器能够根据语法规则,将输入的中文翻译成英文。这里的翻译器就是解释器模式定义中的“解释器”。

刚刚翻译器这个例子比较贴近生活,现在,我们再举个更加贴近编程的例子。

假设我们定义了一个新的加减乘除计算“语言”,语法规则如下:

我们举个例子来解释一下上面的语法规则。

比如“ 8 3 2 4 - + _ ”这样一个表达式,我们按照上面的语法规则来处理,取出数字“8 3”和“-”运算符,计算得到 5,于是表达式就变成了“ 5 2 4 + _ ”。然后,我们再取出“ 5 2 ”和“ + ”运算符,计算得到 7,表达式就变成了“ 7 4 _ ”。最后,我们取出“ 7 4”和“ _ ”运算符,最终得到的结果就是 28。

看懂了上面的语法规则,我们将它用代码实现出来,如下所示。

代码非常简单,用户按照上面的规则书写表达式,传递给 interpret() 函数,就可以得到最终的计算结果。

public class ExpressionInterpreter {
  private Deque<Long> numbers = new LinkedList<>();

  public long interpret(String expression) {
    String[] elements = expression.split(" ");
    int length = elements.length;
    for (int i = 0; i < (length+1)/2; ++i) {
      numbers.addLast(Long.parseLong(elements[i]));
    }

    for (int i = (length+1)/2; i < length; ++i) {
      String operator = elements[i];
      boolean isValid = "+".equals(operator) || "-".equals(operator)
              || "*".equals(operator) || "/".equals(operator);
      if (!isValid) {
        throw new RuntimeException("Expression is invalid: " + expression);
      }

      long number1 = numbers.pollFirst();
      long number2 = numbers.pollFirst();
      long result = 0;
      if (operator.equals("+")) {
        result = number1 + number2;  // 23行
      } else if (operator.equals("-")) {
        result = number1 - number2;
      } else if (operator.equals("*")) {
        result = number1 * number2;
      } else if (operator.equals("/")) {
        result = number1 / number2;
      }
      numbers.addFirst(result);
    }

    if (numbers.size() != 1) {
      throw new RuntimeException("Expression is invalid: " + expression);
    }

    return numbers.pop();
  }
}

在上面的代码实现中,语法规则的解析逻辑(第 23、25、27、29 行)都集中在一个函数中,对于简单的语法规则的解析,这样的设计就足够了。但是,对于复杂的语法规则的解析,逻辑复杂,代码量多,所有的解析逻辑都耦合在一个函数中,这样显然是不合适的。这个时候,我们就要考虑拆分代码,将解析逻辑拆分到独立的小类中。

该怎么拆分呢?我们可以借助解释器模式。

解释器模式的代码实现比较灵活,没有固定的模板。我们前面也说过,应用设计模式主要是应对代码的复杂性,实际上,解释器模式也不例外。

它的代码实现的核心思想,就是将语法解析的工作拆分到各个小类中,以此来避免大而全的解析类。一般的做法是,将语法规则拆分成一些小的独立的单元,然后对每个单元进行解析,最终合并为对整个语法规则的解析。

前面定义的语法规则有两类表达式,一类是数字,一类是运算符,运算符又包括加减乘除。利用解释器模式,我们把解析的工作拆分到 NumberExpression、AdditionExpression、SubstractionExpression、MultiplicationExpression、DivisionExpression 这样五个解析类中。

按照这个思路,我们对代码进行重构,重构之后的代码如下所示。

当然,因为加减乘除表达式的解析比较简单,利用解释器模式的设计思路,看起来有点过度设计。不过呢,这里我主要是为了解释原理,你明白意思就好,不用过度细究这个例子。

public interface Expression {
  long interpret();
}

public class NumberExpression implements Expression {
  private long number;

  public NumberExpression(long number) {
    this.number = number;
  }

  public NumberExpression(String number) {
    this.number = Long.parseLong(number);
  }

  @Override
  public long interpret() {
    return this.number;
  }
}

public class AdditionExpression implements Expression {
  private Expression exp1;
  private Expression exp2;

  public AdditionExpression(Expression exp1, Expression exp2) {
    this.exp1 = exp1;
    this.exp2 = exp2;
  }

  @Override
  public long interpret() {
    return exp1.interpret() + exp2.interpret();
  }
}
// SubstractionExpression/MultiplicationExpression/DivisionExpression与AdditionExpression代码结构类似,这里就省略了

public class ExpressionInterpreter {
  private Deque<Expression> numbers = new LinkedList<>();

  public long interpret(String expression) {
    String[] elements = expression.split(" ");
    int length = elements.length;
    for (int i = 0; i < (length+1)/2; ++i) {
      numbers.addLast(new NumberExpression(elements[i]));
    }

    for (int i = (length+1)/2; i < length; ++i) {
      String operator = elements[i];
      boolean isValid = "+".equals(operator) || "-".equals(operator)
              || "*".equals(operator) || "/".equals(operator);
      if (!isValid) {
        throw new RuntimeException("Expression is invalid: " + expression);
      }

      Expression exp1 = numbers.pollFirst();
      Expression exp2 = numbers.pollFirst();
      Expression combinedExp = null;
      if (operator.equals("+")) {
        combinedExp = new AdditionExpression(exp1, exp2);
      } else if (operator.equals("-")) {
        combinedExp = new AdditionExpression(exp1, exp2);
      } else if (operator.equals("*")) {
        combinedExp = new AdditionExpression(exp1, exp2);
      } else if (operator.equals("/")) {
        combinedExp = new AdditionExpression(exp1, exp2);
      }
      long result = combinedExp.interpret();
      numbers.addFirst(new NumberExpression(result));
    }

    if (numbers.size() != 1) {
      throw new RuntimeException("Expression is invalid: " + expression);
    }

    return numbers.pop().interpret();
  }
}

解释器模式实战举例

接下来,我们再来看一个更加接近实战的例子,也就是咱们今天标题中的问题:如何实现一个自定义接口告警规则功能?

在我们平时的项目开发中,监控系统非常重要,它可以时刻监控业务系统的运行情况,及时将异常报告给开发者。比如,如果每分钟接口出错数超过 100,监控系统就通过短信、微信、邮件等方式发送告警给开发者。

一般来讲,监控系统支持开发者自定义告警规则,比如我们可以用下面这样一个表达式,来表示一个告警规则,它表达的意思是:每分钟 API 总出错数超过 100 或者每分钟 API 总调用数超过 10000 就触发告警。

api_error_per_minute > 100 || api_count_per_minute > 10000

在监控系统中,告警模块只负责根据统计数据和告警规则,判断是否触发告警。至于每分钟 API 接口出错数、每分钟接口调用数等统计数据的计算,是由其他模块来负责的。其他模块将统计数据放到一个 Map 中(数据的格式如下所示),发送给告警模块。接下来,我们只关注告警模块。

Map<String, Long> apiStat = new HashMap<>();
apiStat.put("api_error_per_minute", 103);
apiStat.put("api_count_per_minute", 987);

为了简化讲解和代码实现,我们假设自定义的告警规则只包含“||、&&、>、<、==”这五个运算符,其中,“>、<、==”运算符的优先级高于“||、&&”运算符,“&&”运算符优先级高于“||”。

在表达式中,任意元素之间需要通过空格来分隔。除此之外,用户可以自定义要监控的 key,比如前面的 api_error_per_minute、api_count_per_minute。

那如何实现上面的需求呢?我写了一个骨架代码,如下所示,其中的核心的实现我没有给出,你可以当作面试题,自己试着去补全一下,然后再看我的讲解。

public class AlertRuleInterpreter {

  // key1 > 100 && key2 < 1000 || key3 == 200
  public AlertRuleInterpreter(String ruleExpression) {
    //TODO:由你来完善
  }

  //<String, Long> apiStat = new HashMap<>();
  //apiStat.put("key1", 103);
  //apiStat.put("key2", 987);
  public boolean interpret(Map<String, Long> stats) {
    //TODO:由你来完善
  }

}

public class DemoTest {
  public static void main(String[] args) {
    String rule = "key1 > 100 && key2 < 30 || key3 < 100 || key4 == 88";
    AlertRuleInterpreter interpreter = new AlertRuleInterpreter(rule);
    Map<String, Long> stats = new HashMap<>();
    stats.put("key1", 101l);
    stats.put("key3", 121l);
    stats.put("key4", 88l);
    boolean alert = interpreter.interpret(stats);
    System.out.println(alert);
  }
}

实际上,我们可以把自定义的告警规则,看作一种特殊“语言”的语法规则。我们实现一个解释器,能够根据规则,针对用户输入的数据,判断是否触发告警。利用解释器模式,我们把解析表达式的逻辑拆分到各个小类中,避免大而复杂的大类的出现。按照这个实现思路,我把刚刚的代码补全,如下所示,你可以拿你写的代码跟我写的对比一下。

public interface Expression {
  boolean interpret(Map<String, Long> stats);
}

public class GreaterExpression implements Expression {
  private String key;
  private long value;

  public GreaterExpression(String strExpression) {
    String[] elements = strExpression.trim().split("\\s+");
    if (elements.length != 3 || !elements[1].trim().equals(">")) {
      throw new RuntimeException("Expression is invalid: " + strExpression);
    }
    this.key = elements[0].trim();
    this.value = Long.parseLong(elements[2].trim());
  }

  public GreaterExpression(String key, long value) {
    this.key = key;
    this.value = value;
  }

  @Override
  public boolean interpret(Map<String, Long> stats) {
    if (!stats.containsKey(key)) {
      return false;
    }
    long statValue = stats.get(key);
    return statValue > value;
  }
}

// LessExpression/EqualExpression跟GreaterExpression代码类似,这里就省略了

public class AndExpression implements Expression {
  private List<Expression> expressions = new ArrayList<>();

  public AndExpression(String strAndExpression) {
    String[] strExpressions = strAndExpression.split("&&");
    for (String strExpr : strExpressions) {
      if (strExpr.contains(">")) {
        expressions.add(new GreaterExpression(strExpr));
      } else if (strExpr.contains("<")) {
        expressions.add(new LessExpression(strExpr));
      } else if (strExpr.contains("==")) {
        expressions.add(new EqualExpression(strExpr));
      } else {
        throw new RuntimeException("Expression is invalid: " + strAndExpression);
      }
    }
  }

  public AndExpression(List<Expression> expressions) {
    this.expressions.addAll(expressions);
  }

  @Override
  public boolean interpret(Map<String, Long> stats) {
    for (Expression expr : expressions) {
      if (!expr.interpret(stats)) {
        return false;
      }
    }
    return true;
  }

}

public class OrExpression implements Expression {
  private List<Expression> expressions = new ArrayList<>();

  public OrExpression(String strOrExpression) {
    String[] andExpressions = strOrExpression.split("\\|\\|");
    for (String andExpr : andExpressions) {
      expressions.add(new AndExpression(andExpr));
    }
  }

  public OrExpression(List<Expression> expressions) {
    this.expressions.addAll(expressions);
  }

  @Override
  public boolean interpret(Map<String, Long> stats) {
    for (Expression expr : expressions) {
      if (expr.interpret(stats)) {
        return true;
      }
    }
    return false;
  }
}

public class AlertRuleInterpreter {
  private Expression expression;

  public AlertRuleInterpreter(String ruleExpression) {
    this.expression = new OrExpression(ruleExpression);
  }

  public boolean interpret(Map<String, Long> stats) {
    return expression.interpret(stats);
  }
}

总结

  1. 解释器模式为某个语言定义它的语法(或者叫文法)表示,并定义一个解释器用来处理这个语法。
  2. 它的代码实现的核心思想,就是将语法解析的工作拆分到各个小类中,以此来避免大而全的解析类。

设计模式系列阅读目录